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The leading-order fluid motions and frequencies in resonance tubes coupled to a 
combustion-driven flow source, such as occurs in various types of pulse combustors, 
are usually strongly related to those predicted by linear acoustics. However, in order 
to determine the amplitudes of the infinite number of classical acoustic modes 
predicted by linear theory alone, and hence the complete solution, a nonlinear analysis 
is required. In the present work, we adopt a formal perturbation approach based on 
the smallness of the mean-flow Mach number which, as a consequence of solvability 
conditions at higher orders in the analysis, results in an infinitely coupled system of 
nonlinear evolution equations for the amplitudes of the linear acoustic modes. An 
analysis of these amplitude equations then shows that the combination of driving 
processes, such as combustion, that supply energy to the acoustic oscillations and 
those, such as viscous effects, that dampen such motions, in conjunction with the 
manner in which the resonance tube is coupled to its flow source, provides an effective 
mode-selection mechanism that inhibits the (linear) growth of all but a few of the 
lower-frequency modes. For the common case of long resonance tubes, the lowest 
frequencies correspond to purely longitudinal modes, and we analyse in detail the 
solution behaviour for a typical situation in which only the first of these has a positive 
linear growth rate. Basic truncation strategies for the infinitely coupled amplitudes are 
discussed, and we demonstrate, based on analyses with both two and three modes, the 
stable bifurcation of an acoustic oscillation, or limit cycle, at a critical value of an 
appropriate bifurcation parameter. In addition, we show that the bifurcated solution 
branch has a turning point at a second critical value of the bifurcation parameter 
beyond which no stable bounded solutions exist. 

1. Introduction 
The subject of combustion-driven acoustic oscillations is of fundamental importance 

in a number of practical combustor applications. Notable examples include propulsion 
systems such as solid and liquid rocket motors, and modern pulse combustors such as 
those used for heating and drying applications. In the case of rocket motors, such 
acoustic oscillations are commonplace and are generally referred to as combustion 
instabilities.? As the term ‘instability’ in a practical context often implies, they are 
primarily important in propulsion because large-amplitude oscillations can lead to 
unacceptable structural vibrations and even failure. In the case of pulse combustors, on 

t This terminology is, unfortunately, rather ambiguous, since there exist other well-known types 
of non-acoustic instabilities in propellant combustion that arise owing to both hydrodynamic and 
double-diffusive (‘diffusional/thermal’) effects (cf. Williams 1985; Margolis & Williams 1988, 1989; 
Bechtold & Margolis 1989, 1991). 
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FIGURE 1. Geometry of the model pulse combustor considered here. Particles are injected at the 
entrance to the resonance tube, which is fed by the flow from the combustion chamber. 

the other hand, the oscillations are favourable from the standpoint of efficiency, since 
pulse combustors can be self-pumping and lead to enhanced rates of heat transfer 
and/or evaporation. Here too, however, large oscillation amplitudes are often 
unacceptable owing not only to accompanying noise levels, but also for the same 
reasons that apply to rocket motors. Indeed, one of the earliest and most well-known 
applications of the pulse combustor was its use to propel the V-1 buzz-bomb in World 
War II (cf. Putnam, Belles & Kentfield 1986). 

Whether one is talking about acoustic oscillations in the resonance tube of a pulse 
combustor (see figure 1) or acoustic oscillations in a rocket chamber, the fundamental 
problem is similar in that one wishes to study the nature of acoustic oscillations in a 
partially enclosed volume as a function of various parameters. Although these 
oscillations are intrinsic to the geometry of the volume (indeed, the equations of linear 
acoustics typically emerge in a first approximation), they are, in fact, also driven by the 
energy released due to the occurrence of combustion in some part of the system. Hence, 
such oscillations are said to be combustion-driven, and it is this coupling to the 
combustion processes that distinguishes such problems from other branches of 
acoustics. Though the details of the analysis differ for the above two types of 
combustion-driven problems (owing primarily to differences in the boundary 
conditions, as discussed below), it is nonetheless true that in both problems classical 
acoustic modes in the chamber/resonance tube play a primarily role, and consequently, 
the same general type of analysis is applicable to both problems. Indeed, the type of 
analysis performed here is relevant to an even wider range of gasdynamic problems 
that lead to forced acoustic oscillations. For example, the forced motion of a piston in 
a cylinder also leads to a similar type of acoustic problem, although the more direct 
driving of the oscillations through the motion of the piston leads to steep waves and 
shocks that, as a general rule, require much greater modal resolution than the 
combustion-driven acoustic oscillations considered here (cf. Wang & Kassoy 1990 a-c). 

Thus, although the focus in this work is on the resonance tube/pulse combustor 
application as discussed below, the approach that we have adopted in the present work, 
as well as in a preliminary study (Margolis 1992), is closely related to the methods that 
have been developed for treating acoustic instabilities in solid and liquid propellant 
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rocket motors (cf. Culick 1976a, b, 1990; Culick & Yang 1992). As in the propellant 
work, we obtain the classical equations of linear acoustics as the leading-order 
perturbation to the basic flow in the resonance tube, with effects due to coupling with 
the combustion chamber and other processes within the resonance tube appearing as 
higher-order perturbations. The challenge is then to determine the amplitudes of the 
infinite number of classical acoustic modes that are present as a function of the 
parameters in the problem. In the rocket motor problem, the adopted procedure has 
been to reduce the problem to a set of ordinary differential equations for the time- 
dependent amplitudes via a form of spatial averaging based on Galerkin’s method, 
followed by either direct numerical integration of the amplitude equations (Zinn & 
Powell 1970) or by time-averaging (Culick 1976a, b). In the present problem, 
however, we have introduced an alternative, more formal approach based on nonlinear 
stability theory (cf. Matkowsky 1970; Margolis & Matkowsky 1983). In particular, we 
have constructed a formal perturbation procedure that provides infinitely coupled first- 
order evolution equations for the amplitudes of the linear acoustic modes as a 
consequence of appropriate solvability conditions at higher orders in the analysis. The 
linearized form of these equations then determines conditions for the (linear) growth 
or decay of individual acoustic modes, while an analysis of an appropriately truncated 
subset of the full nonlinear system describes the long-time dynamics of the acoustic 
oscillations. 

As indicated above, we here apply the approach just described to a model of a 
Helmholtz-type pulse combustor introduced in our preliminary work (Margolis 1992) 
and illustrated in figure 1. We have chosen this application partly because it is a new 
application for this type of analysis, and partly because the difference in boundary 
conditions results in a completely different set of amplitude equations. In particular, 
the resulting evolution equations for the acoustic amplitudes contain cubic non- 
linearities, rather than the quadratic nonlinearities that are obtained for the propellant- 
type problems (Culick 1976a, b). In this model, as in other possible models of pulse 
combustors, there is a periodic flow field associated with acoustic instabilities in a 
resonance tube, which in turn is coupled in some fashion to a combustion chamber that 
supplies energy to the acoustic field. Consequently, owing to various damping effects 
within and/or on the boundaries of the resonance tube, initially infinitesimal 
perturbations may either decay or grow to some finite amplitude. In the latter case, the 
resulting oscillating flow field may offer distinct advantages over one that is steady in 
a wide variety of applications (cf. Putnam et al. 1986; Barr et al. 1988, 1990; Dec & 
Keller 1990; Dec, Keller & Hongo 1991; Bramlette & Keller 1987). The specific 
problem modelled here is that of a pulse combustor used in moisture removal, or 
drying, applications. A combustion chamber is attached to a resonance tube, and wet 
particles are injected at or very near the entrance to the latter, which in turn is attached 
to a larger decoupling chamber in which an essentially constant pressure is maintained. 
The advantage of using a pulse combustor for such purposes lies in the fact that the 
oscillating flow field usually enhances drying efficiency (Bramlette & Keller 1987), but 
in the present context, it serves primarily as a convenient, yet physical, model for 
illustrating a general approach to analysing acoustic instabilities in partially enclosed 
volumes. 

In what follows, we first summarize the mathematical model of the pulse combustor 
described above. We then introduce appropriate scalings and show how the magnitude 
of the acoustic perturbation amplitude can be formally related to the mean-flow Mach 
number in the typical case when the latter is small. This allows a perturbation 
expansion of all variables in appropriate powers of a single small quantity, and enables 
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us to formally derive the equations for linear acoustics governing the leading-order 
perturbation from steady, one-dimensional flow through the resonance tube. The 
sequence of problems that emerge at higher orders in the analysis are then 
inhomogeneous versions of the leading-order problem, solvability conditions for which 
lead to infinitely coupled nonlinear evolution equations for the amplitudes of the 
classical acoustic modes predicted by the leading-order analysis. A linearization of 
these equations then allows the determination of the growth or decay rate of each 
modal component of an infinitesimal acoustic perturbation as a function of the various 
parameters in the problem. This information in turn serves as a guide in the 
formulation of appropriate truncation schemes for the full, infinitely coupled, 
nonlinear system. These results are illustrated for a typical situation in which the 
lowest-frequency mode has a positive linear growth rate, while the remaining modes all 
decay according to the linearized amplitude equations. Using both two- and three- 
mode truncations of the full nonlinear evolution equations, we then construct the 
bifurcation diagram for the amplitude of an acoustic oscillation, or limit cycle, as a 
function of a parameter that measures the strength of the coupling between velocity 
and pressure at the entrance to the resonance tube. 

2. The mathematical model 
The model for the pulse combustor introduced in a recent preliminary study 

(Margolis 1992) and depicted in figure 1 consists of appropriate conservation 
equations for two-phase flow within the resonance tube, subject to certain conditions 
at the entrance and exit of the tube, as well as boundary conditions on the sidewalls. 
As we shall show, it turns out that the only essential requirement for the maintenance 
of a time-dependent flow field associated with acoustic instabilities is that there be a 
dynamic balance between processes that supply energy to the acoustic motions, and 
those that act to dampen such motions. Accordingly, we shall deliberately keep the 
model as simple as possible in order to capture only the most essential features for 
obtaining the amplitude equations that govern the bifurcation of an acoustic 
oscillation. In particular, we circumvent the complex details of the combustion/ 
acoustic interactions by representing them in the form of a phenomenological 
coupling between the velocity and pressure fields at the entrance to the resonance tube. 
We also consider only the limiting (equilibrium) case of infinitesimally small particles 
so that velocity and temperature differences between the gas and the particles are 
negligible. Thus, coupling of the gas and particle phases occurs solely due to 
evaporation from the initially wet particles, which, along with certain viscous effects, 
constitute the only potential damping mechanisms within the resonance tube itself. 
However, virtually all processes that may assume quantitative importance may, if 
desired, be treated explicitly within the general context of the present analysis. The 
present model, on the other hand, is sufficient to illustrate the general approach and to 
give the essential physical results regarding the nonlinear stability of acoustic 
oscillations. 

2.1. Governing equations 
Under the above assumptions, the governing equations within the tube reduce to 
conservation of particle density @J, 
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conservation of gas density Gg), which, when combined with that for particle density, 
gives the overall mass conservation equation for the total density @), 

conservation of total momentum Gr?), 
aii 
at 

b 7 + p(a. V) r? = - vp + p a  + $V(V. r?) ; 

and conservation of energy. The last, when combined with the gas-phase equation of 
state p" = p g  l?F = (,j -bK) if, which is equivalent to the average equation of state 

p = p R F ,  R = ( l - p " , / b ) R  (2.4) 
for the two-phase flow (cf. Marble 1970), can be put in the form of an equation for 
pressure ( p )  according to 

Here, l? is the gas constant, f i  is the coefficient of viscosity (assumed constant), ,I26 is 
the viscous dissipation, r" < 0 is the vaporization rate, and L" > 0 is the heat of 
vaporization. For simplicity, thermal diffusion has been neglected, so in essence we are 
considering the case of an infinite-Prandtl-number fluid. In addition, we have 
introduced the ratio of average specific heats = cp/cV and the effective gas constant 
R = c,/c~ (in contrast to their gas-phase counterparts y = CJEU and R" = C p - C J ,  
where C? and C, are defined in terms of the single-phase heat capacities Z p ,  Cu (gas) and 
CK (particles) by 

Fp = (1 - P"Jb) C p  + (,j,/P") Ex, Fv = (1 -fin/;) Cv + @ , / p )  En. 
We note that the particle density varies not only owing to kinematics, but also owing 

to vaporization from the wet particles, which is accounted for by the negative 
production term in the particle mass and total energy equations. Thus, the particle 
density f i n  = p , + p h ,  where p", and F A  are the solid inert and vaporizable liquid 
components, respectively, of the total particle density pz. The dependence of the 
vaporization rate r" on pressure and temperature is safely assumed to be such that 
i3lr"\/2F > 0 and al4/ap < 0, but may otherwise be empirically correlated with actual 
data or modelled according to various droplet and spray vaporization considerations 
(cf. Prakash & Sirignano 1980; Law 1982; Williams 1985). In the present work, 
however, the scale of the particle loading will be sufficiently small (see below) so that 
the local pressure and temperature dependence of r" will not enter into our analysis 
through the order needed to obtain evolution equations for the leading-order acoustic 
oscillations. 

To complete the specification of the problem, we prescribe the boundary conditions 

= po, n * Elc = 0, r?lz=o = (0,0,&7(?- &)I,, (2.6a-c) 
corresponding to an imposed pressure at the exit of the resonance tube, no mass 
penetration at the sidewalls C, and a functional relationship between pressure and the 
inflow velocity at the entrance to the resonance tube. In Appendix B, we show how 
these conditions may be modified, using admittance/impedance conditions similar to 
(2.6 c), to explicitly treat additional boundary effects associated with acoustic damping 
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at the sidewalls owing to a viscous boundary layer and radiation damping out the end 
of the resonance tube. For the present, however, we suppress the formal consideration 
of these effects, thereby eliminating the need for a no-slip constraint on the velocity 
components and ultimately giving a pressure node condition at the exit. Furthermore, 
it turns out (Appendix B) that the various types of damping processes that arise in this 
problem all lead to the same form of the amplitude equations that determine the 
acoustic bifurcation discussed in 996 and 7. Consequently, we may now regard the 
viscosity coefficient ,k as a phenomenological parameter that accounts in some 
qualitative sense for all damping phenomena in the problem. We also note that the 
neglect of thermal diffusion relative to the empirically larger viscous diffusion term in 
(2.3) precludes a specification of a sidewall boundary condition on the temperature. 
However, it implies that, to a first approximation, we are restricting consideration to 
the case of adiabatic sidewalls, as can be seen from the fact that the leading-order 
normal heat flux is zero there (see (3.2) and (3.5b) below). 

The pressure/velocity relationship (2.6 c), though also phenomenological in nature, 
has the advantage of allowing the detailed analysis to be confined to the resonance tube 
itself, as in the case of the simpler Schmidt tube (cf. Putnam et al. 1986), while still 
allowing a coupling with those processes in other parts of the pulse combustor. The 
latter is achieved through the introduction of a time delay fd that, along with the 
function f ( f i )  itself, can be empirically related to the problem geometry and the details 
of the injection and chemical processes within the combustion chamber, which is here 
regarded as an adiabatic well-stirred reactor. Although the introduction of a time 
delay, or lag (Grad 1949; Summerfield 1951), has been criticized for its empiricism in 
the context of its use in the modelling of rocket motors, the physical separation of the 
combustion and resonance chambers in the present problem makes it possible to more 
readily regard such a quantity as a physically controllable parameter. Finally, we 
remark that the exit condition (2.6a), which constitutes a neglect of radiation damping 
as indicated above, and which is the appropriate limiting case for the pulse combustor 
problem depicted in figure 1, turns out to give significantly different results from those 
that are obtained in the corresponding analysis of rocket motor stability, as discussed 
below. In particular, as long as this condition holds at leading order in the perturbation 
analysis described here, corresponding to the case in which radiation damping is not 
a larger effect than other damping processes (Appendix B), it turns out that cubic, 
rather than quadratic, nonlinearities appear in the equations governing the amplitudes 
of the classical acoustic modes (93). 

2.2. Scalings and non-dimensionalizations 
In the absence of particle injection, or loading (j7E = 0), a steady solution of (2.2)-(2.6) 
is given by the uniform flow state - -  

p" = P o ,  fi = (O,O, Go), T = T,, = p",, (2.7) 
where Po and b0 are related by the gas-phase equation of state Po = jj,R"z, is the 
adiabatic flame temperature in the combustion chamber, and the given velocity 6, is 
determined by conditions upstream of the combustion chamber. With particle 
injection, p",, ,, the inert component of the particle density at z = 0 for the case of steady 
flow, is a reference value for the total particle density f i n  (assuming the corresponding 
liquid component PA, , of the steady particle density at z = 0 is no larger in magnitude 
thanjF,,). These quantities may be used to define the reference sound speed a", = 
(yR"T,)z, which in turn defines the Mach number M = $,/a", of the reference steady 
state (2.7), and a parameter 6 = po,o/p"o which measures the size of perturbations due 



Nonlinear stability of combustion-driven acoustic oscillations 73 

to particle injection. In what follows, the realistic limit of small M and 6 will be 
exploited to first obtain the steady solution with particle injection, followed by the non- 
steady equations that govern the behaviour of acoustic perturbations. 

Equations (2.7) provide one set of reference values for pressure, velocity, temperature 
and density. However, it is important to recognize that steady perturbations about this 
state (owing to the presence of particles) and non-steady acoustic perturbations scale 
differently in general, since Go is a characteristic flow velocity for steady perturbations, 
whereas characteristic velocities associated with acoustic disturbances are simply 
assumed to be small relative to the sound speed a",, which is used to non-dimensionalize 
acoustic perturbations. For definiteness, we first introduce non-dimensional quantities 
that are appropriate for the latter. In particular, we define the non-dimensional 
coordinates 

(2.8) 
where I? is the length of the resonance tube, and the non-dimensional variables 

(x, y ,  Z )  = (z/E?, j/E?, ?/if), t = do i/I?, 

p = p"/yp", = p"/bo a":, u = P/Go, p = p / &  pn = bn/b0 = S/j, T = (2.9) 

On the other hand, alternative non-dimensionalizations for the steady perturbations p", 
and P, of the pressure and velocity fields are 

p s  = p",/p", 6; = A 4 - 2 p " , / p 0  a":, us = PJG0 = M-lPs/a",. (2.10) 

Thus, the steady component of velocity is formally scaled by the (small) Mach number 
A4 relative to the non-steady (acoustic) velocity field, and the steady component of the 
pressure perturbation is scaled by M 2  relative to its non-steady counterpart. In a 
similar fashion, it is appropriate to non-dimensionalize the particle density p", by jiV, 
rather than by Do, which accounts for the scaling p, = 66 in (2.9). Finally, for future 
use, we define the non-dimensional vaporization rate ?, heat of vaporization ,f and the 
viscosity p a  according to 

w 

i = H?/Go bF, o, i = L/G& po = ,iZ/p", Go I?, (2.1 1) 
where the last of these is seen to be the inverse Reynolds number of the steady flow. 

We now decompose the dependent variables into a sum of steady and time- 
dependent (fluctuating) components, anticipating that the steady component can be 
expanded in powers of 6 about the particle-less reference state (2.7) and that the non- 
steady component can be sought as an expansion in powers of a small parameter e = 
e(6,M) that measures the amplitude of the acoustic perturbations and depends on 6 
and M in a manner to be determined. Thus, according to the scalings described above, 
we seek a solution in the form 

P = Y-l+ M2P,(4 + p ( X ,  Y ,  z ,  t )  - y-l+ M2(Sps, 1 + . . .) + €( p1 + € p 2  + €2+z3 + . . .), 
(2.12) 

P = P,(z) + C(X,Y ,  Z, t )  - 1 + 6P,, 1 + . . . + €(C1+ €.Q+ c2[3 + . . .), 
p, = @,(z) + a&, y ,  z ,  t )  - 6& 1 + . . . + + et2  + e2t3 + . . .), 
T =  q z ) + o ( x , y , z , t )  -  ST,,,+ ...+s(el+e82+E283+...), 

(2.13) 
(2.14) 
(2.15) 

(2.16) 

As indicated above, in order to proceed with a formal perturbation analysis of the 
problem (2.1)-(2.6), it is necessary to relate the orders of magnitude of the three small 
parameters 8, M and E to one another (33). It is possible, however, to first calculate the 

u = Mu&) + v(x, y ,  z ,  t )  - k q ( O , O ,  1) + (0, 0,6w,, ]) + . . .] + e(vl + ev2 + € 2 U 3  + . . .). 
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leading-order coefficients in the steady parts of the expansions and thus determine the 
leading-order effect of particle loading on the basic solution (i.e. the steady-flow 
solution in the absence of acoustic perturbations). These coefficients in turn will be 
needed at higher orders in the analysis of the non-steady problem. 

2.3. The basic solution 
In the absence of acoustic fluctuations, the steady flow solution in the presence of 
particles is determined by substitution of the steady parts of the expansions 
(2.12)-(2.16) into the non-dimensional version of the governing equations (2.1)-(2.6) 
and equating coefficients of like powers of 6. The leading-order solution, which neglects 
the presence of particles, has already been anticipated by the zeroth-order term in each 
of the above expansions. The first-order correction is thus determined byp,, 1, ps, b,, 1, 

T,, and ws, which satisfy 

(2.17) 

a a 
~ @ S , l + % , l )  = ,cos,l+2w s ,  1 +PS, 1) = 0, (2.18 a, b) 

where the fact that M -4 1 has been used to drop the M2ps, term that arises in the O(S) 
equation of state (2.19 b). The boundary conditions are P,,.~ = 0 at z = 1 and ws, = 

T,, = 0, F s ,  = 1 + h at z = 0, where h = PA, ,,/pa, is the ratio of the liquid to the solid 
component of the particle density at the point of injection. 

We observe from (2.17) that there are two cases to consider, according to whether 
or not vaporization of the liquid component of the particles goes to completion at a 
point z, within the resonance tube (0 d z d 1). In the first case, the solution for 
z 3 z ,  = zLo) + o( l), 0 < zp) = - h / f o  < 1, is 

t 0 z +  1 +A,  1 2-y ?oz, 
PS,l(Z> = { 1, ws,l = P---J{ :;, T,l = r L--  Y - l l ~ - h .  (2.20 a-c) 

(2.20d, e) 

while for zZp) 2 1, the corresponding solution for incomplete vaporization is given by 
(2.2Oa-c) evaluated at z, = 1. We note that the sign of the temperature perturbation 
T,, due to the presence of particles is positive or negative depending on whether the 
(positive) heat of vaporization is less than or greater than (2-y)/(y- l), which for 
a monatomic ideal gas is i. Velocity and pressure perturbations have a similar 
dependence on relative to the larger value l/(y- l), which equals for a monatomic 
ideal gas. 

3. Perturbation analysis 
In the presence of time-dependent fluctuations, substitution of the expansions 

(2.12)-(2.16) into the non-dimensional problem requires that we know how to order 
terms containing various products of 6, M and 6 with respect to one another. 
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Independent of this ordering, however, the leading-order problem for the time- 
dependent perturbations (consisting of terms of O(e)) decouples into the classical linear 
acoustics problem for the pressure #l and velocity v,  given by 

,+V#, 3% = 0, -+V.v1 d#l = 0, vlJz=n = +811,=1 = n.vllc = 0. at 

Nonlinear terms, as well as those proportional to 6 and M (such as the non-steady 
perturbation in the boundary condition at z = 0), appear as inhomogeneous terms at 
higher orders in the analysis and are important in the consideration of the nonlinear 
acoustics problem to be discussed shortly. Equations (3.1 a, b )  can be combined into 
a single scalar wave equation for either h1 or a scalar velocity potential (cf. Temkin 
1981) which may then be solved by separation of variables. The general oscillatory 
solution for a rectangular resonance tube of transverse dimensions a and b (0 < x < a, 
0 d y < b) determines the classical acoustic modes 

bl = exp ( iq ,  k, , t )  cos ( jnx la )  cos (kny lb)  cos [(21+ 1 )  nz /2]  +c.c., 
v1 = - (V#,) dt, where wf, k, , = n2[ jz /az  + kz/bz  + (2l+ 1)’/4] andj, k and I are integers. 
However, since the higher-frequency modes are highly damped (cf. Margolis 1992a or 
equation (3.12) below), and the interest in the present problem is for the case of 
relatively long resonance tubes (a -g 1,  b < l ) ,  only the purely longitudinal, low- 
frequency modes are important for the present analysis. Thus, for the purposes of this 
study, the solution to the leading-order problem (3.1) may, for simplicity, be written 
as a sum over purely longitudinal modes according to 

m 

#l = C A ,  exp (io, t )  cos [;(21+ 1) nz] +c.c., (3.2) 

(3.3) 

where C.C. denotes the complex conjugate of the preceding term, I is an integer, and the 
longitudinal acoustic frequencies wl are given by 

z=n 
m 

u1 = (0, 0, wl), w1 = (- i) A ,  exp (iw, t )  sin [$(21+ 1 )  nz] + c.c., 
z-n 

w, = n(l+#. (3.4) 
Thus, the leading-order time-dependent behaviour is that corresponding to the 
classical acoustic modes. From the non-dimensional versions of (2.2) and (2.3), the 
corresponding leading-order expressions for the total density and temperature 
perturbations are found to be given by 

Cl = #l, 4 = rP1-51 = (r-W1. (3 .54 b). 
Finally, from (2.1) and the expression for bs, we obtain 

where now 

with 2:) = -&’to as before and, through continuity of t1 at z = zc, 

z,  - z?) + € Z p ( t )  + €ZZ?’(t) + . . . (3.5d) 

,,,(O)+ ” ,=,(a)+ ,=,(0)+ ,=,(a)+ ” ,=,(a)+ 
Z F  = (&is, = G~ cli,=,p-, ZF = c1 CJ,=,~ + ciz(atl/wi,=,p-. c1i2=,p)-. 

(3.5e) 
Unfortunately, the results (3.1)-(3.5) obtained thus far do little more than give the 

form of the leading-order solution, since it still remains to determine the (complex) 
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amplitude A ,  of each individual mode and the stability of the corresponding solution. 
These are determined at higher orders in the analysis by application of solvability 
conditions on the inhomogeneous terms that appear at those orders. At this point, 
however, we note that the modal frequencies o, are odd multiples of in, which differ 
from those obtained in a corresponding analysis of instabilities in rocket motors. 
There, the boundary condition at z = 1 on pressure is usually replaced by a no- 
penetration condition on velocity (cf. Culick 1990; Culick & Yang 1992), which for the 
case of purely longitudinal modes, gives modal frequencies which are even multiples of 
2n. 

It is now necessary to relate the three small scales 8, M and t: to one another in order 
to determine which terms appear at which orders in the analysis. The relative 
magnitude of the steady flow parameters 8 and M specifies the level of particle loading 
relative to the flow rate, and it is clearly possible to consider different regimes. In this 
work, we consider the regime 6 - M ,  in which effects due to a non-zero basic flow 
velocity and those due to the presence of particles are felt at the same order in the 
analysis. In that case, a preliminary analysis indicttes that, except in special cases as 
discussed below, the proper scaling of t: is t: - Mi. Alternatively, choosing t: as the 
single small ' bookkeeping' parameter on which to base our perturbation analysis, we 
formally introduce the O( 1) scaled parameters $ and A? by defining 

1 

s = $2, M = 22. (3.6) 
In general, one may anticipate that the evolution of acoustic perturbations occurs on 

a timescale that is longer than the non-dimensional acoustic scale f i /Z,  introduced in 
(2.8). Indeed, a preliminary analysis leads us to introduce the slow time T = €9, so that 
A ,  = A,(T).  We may now determine evolution equations for these leading-order 
amplitudes by considering the O(P)  problems, where the case n = 1 constitutes the 
homogeneous leading-order problem (3. l), and the higher-order problems are 
inhomogeneous versions of (3.1). Specifically, for n > 2, the O(P) problems for v, and 
kin have the form 

(3.7) 
where the inhomogeneous terms q,, r ,  and b, are functions of lower-order coefficients 
in the expansions (2.12)-(2.16). Then, in order for solutions to the inhomogeneous 
problems (3.7) to exist, the inhomogeneous terms must satisfy certain solvability 
conditions at each order. In particular, it is necessary that these terms be orthogonal 
to all solutions of the homogeneous adjoint problem. Since the homogeneous problem 
(3.1) is self-adjoint, it is easily shown (Appendix A) that this requirement translates 
into a set of solvability conditions. For the purely longitudinal oscillations considered 
here, these conditions are given by 

lim [ #.tlz=o b,* + J: ( #+q,* + v i  r,*) dz dt = 0, 
T+w 1 

where +it and vt denote any classical acoustic mode (i.e. any term in the solution 
(3.2)-(3.3)), and the asterisk denotes the complex conjugate. It is the application of 
(3.8) that ultimately leads to the desired amplitude equations for the leading-order 
acoustic modes (3.2)-(3.5). We remark that (3.8) is equivalent to, but easier to apply 
than, a secularity condition that suppresses unbounded growth. This is particularly 
true when, as in the present problem (see below), it is necessary to go to third (or 
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higher) order in the analysis. In that case, it is clearly less difficult to apply an integral 
condition on the inhomogeneous terms at that order than to actually construct the 
appropriate third-order solutions and then to eliminate those terms that lead to 
unbounded growth. 

At O(e2), the expressions for the inhomogeneous terms are given by 

r2 = - 5, aul/at - (V,. v) a,, q2 = - ul. vpl -yb1 v .  u,, b, = 0. (3.9) 
Application of the solvability conditions then shows that each is identically satisfied 
unless, for a given index I ,  there exist either distinct or identical integers I‘ and l“ such 
that wL = wl& 0;. However, since the w2 are odd multiples of fn, such a resonant mode 
interaction, which would first be established on the scale e - M and evolve on the 
timescale r1 = ct, cannot occur. Consequently, the appropriate procedure is to 
continue by first constructing the particular solution to the O(e2) problem for use in the 
0(c3) problem. 

At this point, we pause to emphasizes a fundamental difference between the present 
problem and, to the best of our knowledge, all nonlinear analyses of the rocket motor 
stability problem. In the latter, closed exit conditions are used, resulting in a different 
set of eigenfunctions and corresponding eigenfrequencies from those given above (cf. 
Culick 1976a, b; Paparizos & Culick 1989; Yang & Culick 1990). These eigen- 
frequencies are such that it is possible, as a general rule, for appropriate sums or 
differences of some of them to equal one of the eigenfrequencies. Consequently, in the 
present context, a non-trivial solvability condition is always obtained at this order, 
resulting in quadratic nonlinearities in the resulting amplitude equations. On the other 
hand, since this does not occur in the present problem, non-trivial solvability 
conditions are generally not obtained until third order, resulting in cubic nonlinearities 
in the amplitude equations. 

Thus, proceeding to the O(c3) problem, the inhomogeneous terms are given by 

r3 = - 6 p s , 1 - + M  --+pov~ul+~pov(v’ul) -- 
” aul at  : 12 

ah1 (uz’vpl + u1 .vpJ - y ( b 2  v.  8 1  + p1 v .  uz), (3. lob) a7 
b3 = f i l I * = O ,  t=t-td’ (3.10~) 

where yn. = Zn./Eu andfi = Go i7i/Kjo) (df/dj?I# ) N O(1). We note that viscous heating, 
which is O(Mc2) - O(c4), is negligible through this order in the analysis. Application 
of the solvability conditions at this order then leads to the requirement that the A ,  
satisfy an infinitely coupled system of evolution equations. These equations take the 
form 

m m Z+E’ 

dt z’=n 2’=0 2”=0 
dA, = [(a2 +POPJ M +  y26IA2 + 2 c;, IAA2 4 + c c YE,, I ” ,  1 4  4,AZ+Z,-Z,, 

1 “ + Z ,  2’ 

m m  2 - 1 b O  Z - Z ’ - l  

+ c c Ti,, I ” ,  2 -4: A;A,+,,+,,,+, + c 2 r;.. 2 ” .  3 4,Azn ~ 2 - z , - r - 1 ,  (3.11) 
2‘=0 t”=o L‘=O 1”=0 
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where I = 0, 1,2, . . . , cc. Note that in writing (3.1 l), we have skipped a step by writing 
the amplitude equations in terms of the original unscaled quantities and setting the 
bookkeeping parameter E equal to unity. (Alternatively, wencan simply redefine non- 
scaled amplitudes d , + A ,  and use the definitions 7 = e2t,  6 = 6 / 2 ,  M = M/c2 . )  

A study of solutions to (3.1 1) is obviously quite involved, and our preliminary study 
(Margolis 1992) merely focused on the growth or decay rates of infinitesimal acoustic 
modes. For the purely longitudinal modes considered here, these are determined by the 
linearized version of (3.11), which involve only the linear coefficients a,, p, and y, as 
calculated from (3.8) and the linear components of (3.10). Indeed, writing the complex 
amplitudes A ,  in the polar form R, exp (i$,), it is readily seen that the real amplitude 
R, of an initially infinitesimal acoustic mode will either grow to a finite amplitude 
determined by the full equations (3.1 l), or will tend to decay according to whether the 
linear growth rate A,(&, M )  = Re {(a, + p o p i )  M + y ,  6)  is positive or negative. Here, the 
yz turn out to be purely imaginary, az = fi exp (-iw, t,), and p, = -$w;. Consequently, 
the linear growth rate A,  of the lth mode is given by 

(3.12) 

and so the linear stability of infinitesimal acoustic modes is, in the regime considered 
here, determined entirely by viscous effects, and by the coupling of the acoustic 
perturbations in the resonance tube with the incoming flow from the combustion 
chamber (additional contributions, derived in Appendix B, arise when acoustic 
boundary effects are considered explicitly, as discussed in $2.1). Clearly, viscous effects 
(the last term in (3.12)) serve to dampen acoustic perturbations at a rate that increases 
quadratically with the acoustic frequency. The first term in (3.12), on the other hand, 
selectively fosters either growth or decay depending on the magnitude of the coupling 
strengthfi and the phase difference w,  t, that relate the third-order (recall b, = b, = 0 
in (3.7)) velocity and pressure perturbations at the entrance to the resonance tube. 
Thus, an acoustic oscillation will be encouraged if the velocity and pressure 
perturbations are in phase at z = 0, and discouraged if the opposite is true, which, if 
we associate a positive velocity perturbation with additional energy release in the 
combustion chamber, is in agreement with Rayleigh's classical criterion (Rayleigh 
1878). Here, a positive driving of any given acoustic oscillation therefore depends on 
the value of the time delay t,. However, since the coupling effects are bounded with 
respect to frequency, the negative viscous contribution ultimately dominates for 
sufficiently large frequencies, and thus, as is generally observed, acoustic oscillations 
are predicted to be dominated by contributions from the lower part of the discrete 
frequency spectrum. 

The focus in the present work is, in contrast to the results just described, on the 
nonlinear stability of acoustic oscillations for which a consideration of the full, 
infinitely coupled system (3.1 1) is necessary. In the next section, we therefore fill in the 
additional details required to determine actual expressions for the coefficients of the 
nonlinear terms in these equations. 

A , = [fi cos (wz td) - 03 M ,  

4. Nonlinear stability of longitudinal modes 
Ultimately, we will truncate the amplitude equations (3.1 1) by retaining only the first 

N modes (in order of increasing frequency) according to strategies based on the linear 
results discussed above (see $5).  This motivated the anticipated restriction of the 
analysis to purely longitudinal modes in the previous section for the common case in 
which the resonance tube is relatively long and narrow. Here, we specialize the analysis 
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outlined in the previous section further by replacing the infinite summations by finite 
sums over the leading-order amplitudes A,,  1 = 0,1,2, ..., N' = N -  1 .  As a result, 
the leading-order perturbations (3.1)-(3.5) simplify to 

(4.1) 

(4.2) 

N' 

#zl = 6, = (y - l)-' O1 = C A ,  exp (iw, t )  cos (0, z )  + c.c., 

w1 = C (- i) A ,  exp (iw, t)  sin (wt z )  + c.c., 

1=0 

N' 

z=o 

N' 

z(1) = - f0 C A ,  exp (iw, t )  0;' sin (w,  z f ) )  + C.C. (4.3 b) 

The determination of the coefficients in the amplitude equations through application 
of the solvability conditions (3.8) at 0(s3) requires explicit expressions for the second- 
order quantities b2, u2 = (O,O, w,) and c2, which in turn requires that we solve the 
second-order inhomogeneous problem (3.7) and (3.9). Since the homogeneous solution 
to that problem is identical in form to the leading-order solution, it is readily seen that 
it makes no contribution to the solvability condition. The particular solution +if, w;, 
on the other hand, contains terms proportional to exp [i(w,, f w,-)t] and their complex 
conjugates for 1', l" = 0, 1, . . ., N',  and therefore does give a non-trivial contribution to 
( 3  3). Specifically, using standard summation identities for products of sines and/or 
cosines, the inhomogeneous terms r2 = (0, 0, r,) and q2 become 

r2 = - C 

I = O  

1 N N'  

2 ,'=O I " = , ,  
{A, ,  Alrr(wLr - wt.) exp [i(wl. + wz.) t] + C.C. - A,, A?,(w,, + wZ") 

x exp [i(w,. - w,,,) t] + c.c.)(sin [(a,. + w,") z] - sin [(w,. - wl,,) z]}, (4.4) 
1 N' N' 

q, = - C C (iA,, A,,, exp [i(w,. + w,,,) t] + C.C. + iA,, A: exp [i(w,. - w,.) t] + c.c.} 
2 1'=0 ,"=O 

x ((yo,, + wl-) cos [(W1'+ W,") z] + (yw, -o,-) cos [(wr -0J z]}. (4.5) 
Consequently, it can be verified that wf and bf are given by 

hf = C C { A z ,  A,,, [exp [i(o,. + wIr,) t] AT(z; w,., w,.) + C.C. 
N' N' 

l'=O I"=o 

+ A,, A: exp [i(wlr- w,.) t] A;(z; w,,, w,.) + c.c.}, (4.6) 
N' N' 

wf = C C. (AL,  A,,, [exp [i(w,. + w,.) t] A i ( z ;  w,,, 0,") + C.C. 
L'=O I"+ 

+ Al ,  A: exp [i(w,. - w,,,) t]  A;(z;  w,,, wl.) + c.c.}. (4.7) 
Here, the z-dependent functions A: and A: are defined by 

w,., or) = y+(w,.) z sin [(w,, + wr) z]  
+ f+(wL, ,  wr)  cos [(w,, + o,,,) Z ]  + 6+(w,,, 0,") cos [(w,, - U P )  z], (4.8) 

Ai(z; wl., W,") = oI+(w,.) z cos [(W,' + W,") 21 

+ oi+(w,,, w,") sin [(w,. + w,.) z] + p ( w z r ,  wl") sin [(w,. - wY) 21, (4.9) 

(4.10) 
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where 

Finally, the determination of g, follows from (2.2) at 0(2), which in the general 

-+V*v ,  aL-2 = -~]v'v,-v1.v~] .  (4.13) 
multidimensional case is 

at 

We then use (3.7b) and the definition (3.9b) for q2 to note that 
v.  v2 = -a+i2/at - 0,. v+il - y#l v.  vl.  (4.14) 

Substituting this expression for V - v2 into (4.13) and using the fact (equation (4.1)) that c, = thus gives 
- _  - afi,/at + (y - 1) #, v . u,. 
at 

(4.15) 

Since V v, = - ab1/at according to (3.1 b), equation (4.15) may be integrated to yield 
the long-time result Q = #2-XY-  1>P:, (4.16a) 
which gives c2 in terms of the first- and second-order pressure perturbations (3.2) and 
(4.6). In a similar fashion, the second-order particle-density perturbation is determined 
from (2.1) as 

(4.16b) 
where the second equality follows from (4.14). 

Using the first- and second-order solutions obtained above, we may now evaluate 
the third-order terms r3 = (O,O, r3), q3 and b, given by (3.10). First, we observe that it 
is only necessary to retain those terms that are proportional to exp (iw, t )  for 1 = 0,1, 
..., N', since it is only those terms that can give a non-zero contribution to the 
solvability conditions (3.8). The treatment of the linear terms in (3.10) is 
straightforward, but the cubic terms require a certain amount of book-keeping. In 
particular, the evaluation of the latter results in the appearance of triple sums 

5 5 5  
,'=O 1"=0 2"'=0 

which are conveniently classified according to the time behaviour of the summands. 
Specifically, those triple sums whose summands are proportional to one of the seven 
forms 

exp [i( - w,, + wl" + wl..) t], exp [i(w,, + w2,, + wi,,,) t] ,  exp [i(w2. - wzr, + w,,,,) t] ,  
exp [i(oz. + ol" - w,..) t] ,  exp [i( - wz, - w,,, + wZ..) t ] ,  
exp [i(q - w,,, - wfC8,) t], exp [i( - wzr + wZ" - w,-) t]  

have the potential to give a non-trivial contribution to one of the N solvability 
conditions (3.8) corresponding to the N adjoint solutions proportional to exp (iw, t). 
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Thus, for a given 1, the requirement that the summand be proportional to exp (iwz t )  
results in a double-sum subset of each triple sum that contributes to the corresponding 
(I+ 1)th solvability condition. 

To illustrate these remarks, consider the first of the above seven cases, for which the 
requirement that wzr + wl,, + wZ,,, = wz implies the restriction I' + F + I"' +: = I + :, or I"' = 
Z- (1 + Z' + F), subject to the original range 0 d l"' < N' for l"'. This in turn restricts I' 
and l" to the triangular region 0 d 1' < I -  1, 0 d l" < 1- 1 -1' in the discrete (l', I")- 
plane. Clearly, the original triple sum contributes a non-empty double-sum subset 
~ ~ ~ - , ~ ~ 2 ; "  to all but the first of the N solvability conditions (there is no contribution 
from this particular case to the first solvability condition corresponding to I = 0 owing 
to the fact that it would require P, to be negative, which is outside its range). The 
remaining six cases are handled in a similar fashion. 

These preliminary considerations thus provide a simple methodology for separating 
out the non-trivial parts of the inhomogeneous terms. Consequently, writing r3 = 
r', + rf and 4, = 4: + 4:l as sums of linear and nonlinear parts, expressions for 6, (which 
is linear), r', and q: are given in a straightforward fashion from (3.10) by 

N' 

b, = M fi C exp (iw, t)  A,  exp (- iw, fa) + C.C. (4.17) 
z=o 

+bo~,s in(o1z) ] -~Azp, ,  ,(z)wZsin(w,z)}+c.c., (4.18) 
J 

N 
4: = x exp (iw, t )  -2 cos (wl z) + A ~ A ~  w1 sin (wz z) 

1=0 { Y  
iw 
Y 

- & 4 1 ~ ~ s , l ( z ) [ ( y - l )  yn+ l]cos(w,z) 

while expressions for and qtl are given by 

where n.c.t. (non-contributing terms) stands for all remaining terms that do not 
contribute to any of the first N solvability conditions. Expressions for the z-dependent 
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coefficients appearing in (4.20) are given in terms of the functions A t 2  (equations 
(4.8)-(4.10)) and their derivatives A;; = dA: Jdz according to 

- y[A;’(z; wZ., wl.) 5 iwz8,, A;(z;  wZl ,  wz.)] cos (w,.. z) ,  (4.25) 

d,(Z; wLf ,  Q1“, wl-) = &;, &(z; wZf, wZ”, wZrrp) = &, c^z(z; w2., wl”, wZ.,,) = t:. (4.26) 
We observe that since A: are strictly real and A$ are purely imaginary (see equations 
(4.8)-(4.12)), the coefficients ao, ,, 2, b,, , and c,, are in fact real, while the coefficients 
d o , , , , ,  hl ,2  and 

The desired evolution equations for the N unknown amplitudes A ,  are now obtained 
by direct substitution of (4.17)-(4.20) into the solvability conditions (3.8). Trans- 
forming back to unsealed variables and parameters (which, as indicated below (3.1 l), 
is equivalent to setting the scaling parameter E equal to unity), the result for I = 0,1, 
2, ..., N’ = N -  1 is 

are purely imaginary. 

(4.27) 
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where the linear coefficients are given by 

a, = fi exp (- io, td), 

B, = -to; 1; sin2 (w, z )  dz = -$wf, 

(4.28) 

(4.29) 

and the nonlinear coefficients have the representations 

[ia,(z; o,,, wZ,,, o,,,,) sin (wz z )  C,(w,, wz,, o,", wl,,,) = 

+ Li,(z; w,,, o18,, ozsrv) cos (w, z)] dz, (4.3 1 a) 
s,' 

s: . 

1: 
ym(o,, wzr,  +, oZ.,) = [ib,(z; wzr, w,,,, w,.,,) sin (0, z )  

+ 6,(z; w,., w,,,, w,-) cos (wz z)] dz, (4.31 b) 

[,(w,, o,., oL0, w,,.) = [ic,(z; wz., oZ,,, wL,,,) sin (0, z )  

+ ĉ ,(z; o,., qftr w,,,,) cos (wl z)] dz, (4.3 1 c) 

for m = 0,1,2. Owing to the fact noted above that the a,, b, and c, are real, while 
the rim, im, and c", are imaginary, all of the nonlinear coefficients are also purely 
imaginary. We remark that the above integrals are readily tractable, but since the 
resulting expressions are long and are not particularly revealing, we simply leave them 
in integral form. We also remark that when the nonlinear terms are grouped according 
to specific products of the amplitudes, additional compactification can be achieved, as 
indicated by (3.11). However, the coefficients will then consist of various sums of the 
coefficients defined in (4.31k(4.33), as shown below for the cases N = 2 and N = 3. 
Finally, we emphasize at this point that the nonlinear coefficients depend only on the 
single parameter y, the ratio of specific heats for the gas. 

5. Truncation strategies 
Although the method used to obtain the above amplitude equations is a strictly 

formal one, at this point the problem is similar to virtually any Galerkin-type 
approximation in that one must now decide which modes should be kept and which 
ones can be neglected so as to give an acceptable finite-mode approximation. Rigorous 
results are elusive and at best appear to establish estimates of lower bounds on the 
number of modes required for a qualitatively correct approximation (cf. Manley & 
Trkve 1981; Foias & Treve 1981; Trkve 1981; Constantin et al. 1985). There have also 
been some attempts to introduce formal procedures for generating sequences of 
approximations in the vicinity of a bifurcation point (cf. Ingraham 1990), and error- 
based modifications to the traditional Galerkin approximation have been proposed as 
well (cf. Foias et al. 1988). However, it appears that physically motivated truncation 
schemes based on a knowledge of linear growth rates remain a reasonable and practical 
approach, and it is a variant of such a procedure that is adopted here. 

The expression (3.12) for the linear growth rates A ,  indicates that, for a given set of 
parameter values, only a finite number of modes have positive growth rates, while the 
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remainder decay at a rate that, generally speaking, increases quadratically with the 
mode number 1. This result is, of course, only accurate for infinitesimal perturbations, 
but it is logical to anticipate that it is valid in a qualitative sense for finite-amplitude 
perturbations as well. That is, even though an arbitrarily large number of decaying 
modes may be excited owing to nonlinear coupling with the linearly unstable, lower- 
frequency modes, we conjecture that if some form of nonlinear balance is ultimately 
achieved between growing and decaying modes, the real mode amplitudes lAJ also will 
generally decrease with increasing 1 because as a rule, the larger the mode number, the 
greater the decay rate per unit amplitude. In physical terms, since & I 2  is a relative 
measure of the energy contained in the Ith mode, a bounded solution implies that the 
unstable lower-frequency modes are able, through nonlinear coupling, to dissipate 
energy by transferring some of it to the decaying, higher-frequency modes. By the same 
mechanism, slowly decaying modes, in addition to dissipating energy, also can transfer 
energy to more rapidly decaying modes. Although energy transfer from a higher- to a 
lower-frequency mode can, in principle, occur in specific cases (especially if, owing to 
the sinusoidal term in the expression for the linear growth rate, the former has a smaller 
rate of decay than the latter), it must be true that the general direction of energy 
transfer is towards the more dissipative, higher-frequency modes in order for an energy 
balance to be achieved. Furthermore, the more effective a given mode is at dissipating 
energy, the smaller the long-time magnitude of the corresponding amplitude is likely 
to be. The net result is that since amplitudes are expected to generally decay with mode 
number, it is reasonable to expect that an appropriately truncated version of (3.1 l), or 
(4.27) for finite N’,  will give an approximate solution to the full infinitely coupled 
system. 

Since the modes whose amplitudes are A,  have already been ordered with respect to 
increasing I ,  one could, in principle, simply study the problem repeatedly for larger and 
larger values of the truncation number N until the presumed convergence of any 
solution becomes apparent. However, we wish to take advantage of our reduction of 
the original system of conservation laws to a set of ordinary evolution equations (4.27) 
to obtain, for any given N ,  the complete bifurcation behaviour of the problem, in as 
much analytical detail as possible. Thus, we wish to choose a value of N that is as small 
as possible, but not so small that solutions are spurious (i.e. not preserved for larger 
values of N )  and therefore of no physical interest. Consequently, at the very least, it 
is obviously appropriate to retain all linearly unstable or neutrally stable modes (i.e. 
those with non-negative growth rates). However, we also expect, as will be illustrated 
below, that it is necessary to include one or more modes with negative growth rates in 
order to provide the stable energy transfer mechanism discussed above. Therefore, our 
first approximation is to keep a minimum of N modes, where N corresponds to the 
smallest integer such that the Nth and all higher modes have negative decay rates. 
Using this rule, there may be one or more modes among the first N - 2  that have 
negative decay rates. However, as supported by the analysis below for the case N = 2, 
the preferred direction of energy transfer appears to be from the lower to higher mode 
numbers, in agreement with similar conclusions drawn in other contexts (cf. Paparizos 
& Culick 1989). Consequently, it will always be assumed that the Nth mode is a 
decaying mode, even if one or more lower-frequency decaying modes are already 
present. Finally, we regard any solution of the N-mode approximation for which A ,  
is not small, either in magnitude or relative to A,-,, as an indication that this 
truncation may not be valid with respect to that solution, and proceed to compare 
the results with those obtained from the (N+  1)-mode approximation. In contrast, any 
solution for which A ,  is sufficiently small is regarded as a probable approximate 
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solution of the full amplitude equations, though a comparison with one or more 
higher-mode approximations is usually still desirable both for qualitative verification 
and quantitative refinement. 

As a final note, we remark that although the analysis that follows indicates that small 
values of the truncation number N can indeed succeed in capturing the essential 
bifurcation character of the acoustic oscillations under certain conditions, this is not 
necessarily the case. For example, although not immediately evident from the two- and 
three-mode analyses presented below, which are valid when do > 0 and dzz0 < 0, it 
generally turns out (Margolis 1993) that if A ,  > 0, there is a strong resonant-type of 
coupling between the Zth mode and the (31+l)th mode corresponding to the 
frequencies w Z  and uaZfl = 3wZ, respectively. Thus, if the Ith mode has a positive linear 
growth rate, any truncation scheme will need to include the (31+ 1)th mode, leading to 
a rapid growth in the truncation number N .  For those problems characterized by steep 
waves or weak shocks, such as the forced piston problem, it is clear that N may have 
to be quite large to achieve the modal resolution required to capture the phenomenon 
(cf. Wang & Kassoy 199Oa-c). 

6. Analysis for the case of two modes (N’  = 1 )  

re-introducing scaled variables according to 
Before proceeding, it is convenient to eliminate the Mach number M from (4.27) by 

A = AIM;,  r = M t ,  (6.1) 

which, since M - O(2)  according to (3.6), essentially corresponds to the same scalings 
introduced in $82 and 3. Thus, grouping the nonlinear terms according to products 
of amplitudes, the two-mode approximation is obtained from (4.27) for 1 = 0 and 
I =  1 = “ a s  
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for 1 = I' = 0, where, as indicated below (4.31), we have explicitly noted that the 
complex coefficients of all nonlinear terms have zero real parts. We also observe that 
the real parts hi of the linear coefficients are equal to the scaled linear growth rates 
M-ld , .  In accordance with the discussion in $5 ,  we assume, unless otherwise noted, 
that A: > 0 and < 0, corresponding to a linearly unstable first mode and a linearly 
stable second mode. 

In proceeding with an analysis of (6.2) and (6.3), it is convenient to introduce real 
amplitudes and phases for the complex amplitudes &r) = R,(r) exp [iq51(r)]. Sub- 
stituting this representation into the complex amplitude equations and separating real 
and imaginary parts then leads to the equivalent system 

(6.10) 
dR 
---? = hf; R, - 4, o, , Ri R, sin (q5,  - 3#0), 
d r  

-- dR1 - A; R, +A;, ,, R; sin (#, - 34,), 
dr (6.1 1) 

d#l - 
Rip dr - hi R1 -I- ha, 0,  o Ri COS - 3#0) +A;, 0, Ri R, + At, ,, i R:. (6.13) 

By introducing the phase difference variable $ = q51 - 3$0, we thus obtain the closed 
subsystem 

3 = A; R, -A:, ,, R; R, sin 9, dr 

dR, 
dr 

(6.14) 

- hi R, + A;, ,, R; sin $, (6.15) -- 

d$ = +A, Ri + A, R; +At ,  o, 0 Ri Rll cos $- 3&, 0 ,  , Ro R, cos $, (6.16) 

where we have defined 

d -  = h'-3hX, 1 ,- =hi 0,0,1 ~ -3h' o,o,r) ,  hqEh:,1,i-34i,1,i. (6.17) 

Although not immediately obvious, it can be shown that the coefficients of the 
nonlinear terms, which are functions of y only, are related to one another according 
to 

hi ~ - hi o,l,i, = 3h;,0,6, A, = - A  = 3hi 0, 0 , O '  0, 0 ,  1 - 0, 0,oy A;, 0,1 = 3hi Q 

(6.1 8 u-d) 
Thus, the number of parameter-dependent coefficients in (6.14t(6.16) actually reduces 
to the real part of the linear growth rates A', and hf, a phase difference A, formed from 
the imaginary parts of the linear growth rates, and a single nonlinear coefficient 
ha,,,,(y) that is independent of any coupling or particle parameters. Fur future 
reference, ha,,,, and hi,,,, are plotted in figure 2, where the latter is needed in the 
calculation of the individual phases #, and #2.  The remaining nonlinear coefficients are 
then completely determined according to (6.18). 

Equations (6.14H6.16) allow us to verify immediately several of the conjectures 
discussed in $ 5  that guide our choice of a first truncated approximation of the 
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FIGURE 2. The nonlinear coefficients Xo,,, (= Al ,, o ,  - ) and h0,,, (= iXl,l, as functions 
of their only parameter y. 

amplitude equations. First, if we had retained only the first unstable mode, then (6.14) 
for R, would have been simply dR,/dr = hi R,, which leads to unbounded growth for 
A', > 0. Thus, as conjectured, it is clearly necessary to retain at least one stable mode 
in order to provide the coupling necessary for a balance between growing and decaying 
modes. Secondly, if we had assumed that the first mode was stable and the second 
mode was unstable (i.e. A', < 0, Af > 0), then the above two-mode approximation 
admits the unbounded solution R, = 0, R, = exp (hi t )  + 00. Hence, even though a 
decaying mode was retained in the truncated equations, the fact that it corresponds to 
a lower frequency results in an inability of the system to maintain the necessary 
balance between the growing and decaying modes. On the other hand, when hi > 0 and 
hf < 0, a long-time solution of the form R, + 0, R, = 0 does not exist, and indeed we 
shall see that a nonlinear balance is possible only for non-zero values of both modes. 
In other words, the transfer of energy from the growing to the decaying modes is more 
effective when the direction of transfer is up, rather than down, the frequency 
spectrum, as suggested in 35. 

We now look for steady solutions of (6.14E(6.16). Since the individual phases will 
then grow linearly in time according to (6.12) and (6.13), such solutions in fact 
correspond to time-periodic solutions of the complex amplitude equations (6.2) and 
(6.3). In particular, these solutions will describe limit cycles with perturbed modal 
frequencies wo z wo + M 2  d$,/dt and w1 = w1 + M 2  d$,/dt, = 3m0, where the last 
equality follows from w1 = $IT = 3w, and d$/dt = d($l - 3$,)/dt = 0. 

To analyse the steady solution behaviour of (6.14)-(6.16), it is convenient to first 
define new variables according to 

zo = Ri, z1 = R:, x = R,R,cos$, y = R,R,sin+. (6.19~-d) 
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Then, multiplying (6.14) by R,, (6.15) by R,, and (6.16) by R;, the steady-state version 

(6.20) 
of these equations becomes 

0 = ~ : z , + ~ a , , , o z o y ,  (6.21) 
0 = A,Zl + Aqz; + A, zo z1 + Ah, 0 , o  zo x- 34,0,  z1 x, (6.22) 

x'+y' = zo zl,  (6.23) 

where the last follows from the definitions of x and y in (6.19). These are four nonlinear 
algebraic equations in four unknowns, the first of which gives 

y = A'/# 0 0 , 6 , 1 '  (6.24) 

0 = A'-h' - 
0 o ,o ,  1Y, 

Then, from (6.21), we have the relationship 

> 0, A i  % o , o  z1 = K2Z0, K' -~ A'A' - 
1 0 , 0 , 1  

(6.25) 

where, since z1 and z2 are positive, the inequality is a necessary condition for a non- 
trivial solution to exist. As noted in (6.18a), it is in fact the case that = A:,,, 1, and 
so this necessary condition requires that the linear growth rates A', and A; must have 
opposite signs. We may therefore anticipate from (6.25), as will be demonstrated 
below, that the limit cycle bifurcates from the trivial solution at hf; = 0, and that the 
bifurcation is supercritical. When both modes are linearly unstable, the two-mode 
analysis is incapable of describing a steady limit cycle, which again supports the 
conjecture that any truncation which does not include decaying modes is not a valid 
approximation. Finally, from (6.23) and (6.25), we have 

x = f (K"; -y')i, (6.26) 

Using these relationships, non-trivial solutions for zo are now determined implicitly 

(6.27) 
Squaring both sides of (6.27), we see that for given parameter values, there can exist 
zero, one or two real positive solutions determined by a quadratic equation for zo given 

with the sign of x still to be determined. 

from (6.22) according to 

A, + + Ap) zo = sgn (x) A:, o, 1(3 + A: /A i )  [K'Z; - (Ai /A: ,  o, ,)']I". 

subject to the restriction, imposed by (6.26), that z: 2- y 2 / ~ '  = -A', A:/Aa, o, A:, 0, The 
sign of x for any solution is then determined from (6.27), which, from (6.20), the 
definition (6.19d) for y ,  and (6.25), uniquely determines the phase variable y% as 

sgn(x) > 0 $, = arcsin( . A', ). 
@ = {:$,, sgn (x) < 0 ' K 4 , 0 , 1  zo 

(6.29) 

According to these results, as one or more parameters are varied so that A', increases 
past zero, an acoustic oscillation bifurcates supercritically from the basic unperturbed 
flow. Indeed, in the neighbourhood of the bifurcation point (0 < A', $ I), the solution 
behaves as 

zo = (IN + A2/lAil)i(A',);+ o(n',), z1 = A',zo/lA;I - O(A',)t, x = Ad A', + O(A$, lG, 0,ol  141 hb, 0 , o  

(6.30) 
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where we have used the fact noted above that ha, ,, o / A i ,  o, = 1. We observe that near 
the bifurcation point, zl/zo - O(hf,) 4 1, which is consistent with a two-mode analysis. 
Indeed, the accuracy of any solution for which this ratio is not small is immediately 
suspect, since it indicates the need to retain additional decaying modes in the 
truncation scheme. However, O( 1) values of this ratio may still be qualitatively valid. 
Large values of this ratio, on the other hand, are unacceptable, and may in fact be 
spurious in the sense that they disappear when additional modes are included. For 
example, in the limit + 0 (i.e. in the limit that the decay rate of the stable mode 
becomes small), (6.25) implies that zJz0 becomes unbounded. In order to describe 
possible solutions in this parameter regime, a higher-order truncation scheme is clearly 
required. 

The local stability of a steady solution R: = (z,>:, R; = (z,);, qF (or xs) is determined 
by a linear stability analysis of (6.14)-(6.16). In particular, using the relationships 
(6.19), (6.24) and (6.25), the linear stability of this solution is determined by the 
eigenvalues of the stability matrix 

- A; - A ; / K  

- 3Khi 4 
24, R: - 3Ai, 6, 1(1 + hi/hf,) Ry cos qF 2 4  Rs -hi, 0, ,(3 - h;/hf,) R: cos 

-A;- 0, , R$ R; cos II." 

3 4  + A: 
(6.31) 1, A:, ,, , Rt cos qF 

[ 
where positive (negative) eigenvalues correspond to growth (decay) of infinitesimal 
perturbations r ,  = R,- R:, rl = R, - R; and y = $- qF. From the behaviour (6.30), it 
can be shown that in the neighbourhood of the bifurcation point (0 < hf, g l), the 
eigenvalues (Al, A,, A,) of the stability matrix behave as 

A , , ~  = -Ihr;l+i(h~/lhb,,,,l):+O(hf,), A,  - -4~ ; .  (6.32) 

Consequently, since the real parts are negative, the limit cycle is stable as it bifurcates 
from the basic flow solution, which loses stability, at hf, = fi cos (w, t,) -2p0 4 / 3  = 0, 
or equivalently, as the reduced parameter % = f,i cos (w, td)/po crosses the critical value 
% = ?pi = inz = 1.644934. We note that in terms of this parameter, 

A; = p, (%-$W;)  = p,(%-$", (6.33a) 

(6.33b) 

Thus, as required, A, < 0 is negative at the bifurcation point % = %, but can cross 
from negative to positive values at the larger value % = 3c2/[4 cos' (intd) - 31. Since we 
have already shown the bifurcation to be supercritical (i.e. At; > 0, which requires that 
% be positive), we may restrict further consideration to the range -in < w t < in (i.e. 
- 1 < t, < 1, which ensures that % > 0). Consequently, for time delays in the range 
0 < Itdl < $, lies in the range in2 = 9% < % < co, while larger values of It,l < 1 
imply that hi remains negative for all 9' > 0. 

Bifurcation diagrams corresponding to solutions of (6.28) as the coupling strength 
increases are shown in figures 3-9. They depend on all of the parameters 

? d  

4 F L M  253 
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FIGURE 3. Acoustic amplitudes zo = Ri and z1 = Ri as a function of the parameter group 9 = 
f ;  cos (oo td)/p0 in the two-mode approximation. Heavy (light) curves denote stable (unstable) 
branches. Parameter values are y = 1.3, pa = a, t ,  = 0, and typical values of particle-related 
parameters (quoted in the text). 
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FIGURE 4. Same as figure 3 with y = g. 
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FIGURE 5. Same as figure 3 with y = 1 .1 .  
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FIGURE 6. Same as figure 3 with ,uo = A. 
4-2 
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FIGURE 7. Same as figure 3 with yo = A. 
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FIGURE 8. Same as figure 3 with t, = (i.e. w0 td = QK, w1 t, = in). 
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.6 cos (% td)/& 
FIGURE 9. Same as figure 3 with t ,  = + (i.e. wo t ,  = in, w, t ,  = in). 

individually, but by plotting the amplitudes zo = R;, z1 = R: against the reduced 
parameter group 9, we preserve the bifurcation point at the same value B = 9$ = fn2 
as discussed above. In the neighbourhood of the bifurcation point, the limit cycle has 
the local behaviour described by (6.30). As increases, the amplitudes grow until 
eventually a turning point P = is reached that corresponds to the vanishing of the 
discriminant in the solution of the quadratic (6.28). At this point, which also 
corresponds to a zero eigenvalue of the stability matrix (6.30), the bifurcation branch 
loses stability, and thus only the lower branch is stable. Forf;, greater than this critical 
value, no steady solutions are obtained, and indeed a numerical integration of the time- 
dependent amplitude equations (6.14E(6.16) shows that solutions grow unbounded in 
time. In other words, for sufficiently strong coupling, energy cannot be transferred to 
and/or dissipated by the decaying mode fast enough for acoustic oscillations to remain 
bounded (in $7, we argue that this qualitative result can be physical, and is not 
necessarily an artificial consequence of not retaining enough decaying modes). Much 
larger values of the coupling parameter, however, resulted in a pair of additional 
branches that are born at a second critical value of the coupling parameter (figure 10). 
However, they correspond to solutions for which ZJZ, - O(1) or larger and which 
disappear in the three-mode approximation ($7). They are therefore unphysical and we 
conclude that in the parameter regime in which they are found, the two-mode 
approximation is no longer valid, even though this regime still corresponds to hi < 0. 
The branches shown in figures 3-9 for smaller values of&, on the other hand, not only 
satisfy the expectation that zJz0 be small, but are also preserved in the higher-mode 
approximation, and we therefore regard these as physical. 

Figures 3-9 also allow a comparison of the amplitudes and the critical values of the 
coupling parameter beyond which the limit cycle does not exist, at least in this 
approximation. Figures 3-5 compare different values of the ratio of specific heats y, 
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1 

=1 

FIGURE 10. Same as figure 3 for larger values of 9. The (unphysical) large-amplitude branches do 
not satisfy the criteria for which a two-mode approximation is valid, and are spurious in the sense 
that they are not preserved using higher-order truncation schemes. 

while figures 3, 6 and 7 compare different values of the viscosity p,, which, as 
mentioned earlier, is also the inverse Reynolds number of the basic unperturbed flow. 
Finally, figures 3,8 and 9 compare different values of the time lag t, between the third- 
order velocity and pressure at z = 0. In all of these resylts, we used the same values of 
the various parameters related to the particle loading (8 = 0.5, yn = 5,  = 0.5, h = 0.5 
and r̂ o = - 1, which gives z r )  = 0.5). Qualitatively, the turning point occurs for larger 
values of& (or 9) for both relatively large and small values of y, which, as we recall, 
is the only parameter dependency of the nonlinear coefficients in the amplitude 
equations. Physically, the sound speed a", is proportional to the square root of this 
parameter, and we postulate that the effectiveness of the nonlinear coupling between 
growing and decaying modes is less for intermediate values of the acoustic wave speed 
that correspond to real gases, thereby resulting in larger amplitudes, and hence a 
smaller value of E. Similarly, large values of the viscosity enhance damping, 
permitting larger amplitudes that result in smaller values of FC (but larger values of the 
non-reduced coupling strength fi). Finally, a phase lag between the velocity and 
pressure oscillations at the entrance to the resonance tube allows a modest increase in 
the amplitudes of the acoustic oscillations, but permits a significant increase in the 
coupling strength before the turning point is reached. The latter, of course, reflects the 
fact that the effective coupling strength is greatly reduced (by an amount even larger 
than the factor cos (0, t,) suggested by the linearized equations) when the pressure and 
velocity oscillations are not in phase. 

The effects of particle loading in the present model are confined to the phase 
difference parameter A,, defined in terms of the imaginary parts of the linear growth 
rates according to (6.17). Consequently, the above remarks regarding the effects of the 
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FIGURE 11. Same as figure 3 in the absence of particle loading (6 = 0). 

phase lag between the velocity and pressure oscillation apply to the effects of particle 
loading as well. In particular, particle loading, though neutral with respect to stability 
according to linear theory, is in fact a damping influence in the nonlinear regime. This 
can be readily seen by comparing figures 3 and 9 with figures 11 and 12, where the latter 
show the acoustic response in the absence of particle loading (6 = 0) using the same 
remaining parameter values as in the earlier figures. In figure 1 1 , the time lag t, was also 
zero, resulting in A, = 0, and a consequent vanishing of the linear term in (6.28). As 
a result, the critical value % approaches a value determined by the vanishing of the 
coefficient of the quadratic term in that equation. Using the relations (6.18), this 
condition is given in terms of the real parts of the linear growth rates by 

9(hi)3 + 27(h',)' hi + 15h',(h~)' + = 0, (6.34) 
independent of y, and determines the location of the asymptote for the upper branch 
in figure 3 when A', and hf are expressed in terms of 9 according to (6.33). Thus, as 
particle loading decreases to zero, the turning point disappears, and the amplitudes 
become large (owing to the absence of any nonlinear phase damping). On the other 
hand, for the more realistic case of a non-zero phase difference between velocity and 
pressure at the entrance to the resonance tube (i.e. t ,  $: 0), the bend in the response does 
not vanish (since A, does not vanish) in the limit of zero particle loading. However, as 
a comparison of figures 9 and 12 shows, the value of % becomes smaller and the 
amplitude of the acoustic oscillations is larger when the total amount of phase damping 
due to the combination of coupling and particle loading is reduced. Thus, as is well 
known, the presence of particles can serve to dampen acoustic oscillations, even in the 
small-particle limit considered here. However, it should be noted that the damping 
mechanism described here is a nonlinear effect, distinct from the linear effects of drag 
that arise when the small-particle limit is relaxed (cf. Marble 1970). 
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FIGURE 12. Same as figure 9 in the absence of particle loading (8 = 0). 

7. The three-mode approximation (N' = 2) 
The fact that the turning point is achieved when the amplitude of the decaying mode 

is small compared with that of the growing mode is a strong indication that this aspect 
of the branching behaviour is physical. Nonetheless, it is of interest to quantitatively 
compare the two-mode results with those obtained when three modes are retained. 
Indeed, it is expected that there will be some shift to the right in the location of the 
turning point when additional decaying modes are retained, since the presence of these 
additional modes should enhance the process whereby energy is transferred from the 
growing mode and dissipated. Thus, from (4.27), the three-mode approximation is, 
after introducing real amplitudes R2(7) and phases &(7) as before, 

3 = A', R, - A:? 8, I R2, R, sin +-A:, ,, Rf R, sin I,$-&, , R, R, R, sin (+ - I,$), dr  
(7.1) 

-- dR1 - Af R, + A:, ,, , Ri sin $+ A:, i, R, R, R, sin I,$- A;, o,  R2, R, sin (+- $), (7.2) 
d7 

(7.3) -- dR2 - A', R, - A:, ,, I R, R: sin I,$ + A:, ,, I R2, R, sin (+- $), 
dr  

* = A, + A, Ri +A,  R; + A, Ri + ( A t ,  ,,, , Ri R;' - 3A;, o, , R, R,) cos 3 d7 
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FIGURE 13. Comparison of the two-mode and three-mode approximations for the parameter 
values used in figure 3. 
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In comparing (7.1)-(7s) with (6.14)-(6.16), we see that the latter are recovered from 
the former when R, is set to zero. Thus, we anticipate that the three-mode 
approximation will give a refinement of the results found in the two-mode analysis, and 
figure 13, in which the curve corresponding to three modes was obtained by long-time 
numerical integration of (7.1)-(7.5) from initial conditions, shows that this expectation 
is indeed realized. In particular, the two-mode approximation is quite accurate except 
as the turning point B = & is approached, where a correction in its location is evident. 
However, we note that the revised location of the turning point still occurs far below 
the value (in this particular example) 6 = fwf  = 9 3 ,  where the second mode becomes 
linearly unstable, and even further from the value & = $wi = 2 5 6  where the third 
mode loses linear stability. In addition, at the turning point, it is still true that the ratios 
zl/zo and z2/z1 (where zl = Rr) are both small, which again supports the notion that 
the turning point is physical, and not a consequence of truncation. Of course, the 
inclusion of an additional decaying mode supports quantitatively larger values of F 
and larger amplitudes at the turning point since the system is able to transfer and 
dissipate more energy from the growing mode via the various additional coupling 
terms in (7.1)-(7.5). However, the conclusion here is that, as a general rule, this 
mechanism becomes less efficient the larger the frequency separation between a 
growing and a decaying mode. That is, the inclusion of one decaying mode was 
essential to obtaining physical results, but the inclusion of a second decaying mode had 
only a quantitative, as opposed to qualitative, effect on the results in this regime. 
Consequently, we conjecture, based on the above analysis with two and three modes, 
that a convergence in the value would be realized as additional modes are retained 
in the truncation scheme. Of course, further calculations with larger numbers of modes 
would be valuable here, providing greater insight into the effects of mode truncation 
on the bifurcation structure associated with acoustic instability. 

As mentioned earlier, additional branches for which z,/zo was no longer small (figure 
10) were obtained for significantly larger values of 9 < Fl using the two-mode 
approximation. These, however, appear to be an artifact of the truncation and (the 
stable portions, at least) were not reproducible using the three-mode approximation 
(7.lt(7.5). Indeed, in that parameter regime, only unbounded solutions of (7.1)-(7.5) 
were obtained. 

8. Conclusions 
The present work has shown how the equations governing acoustic oscillations in 

partially enclosed volumes can be formally reduced to a system of ordinary evolution 
equations for the amplitudes of linear acoustic modes. The success of this procedure 
depends on first appropriately scaling the magnitude of acoustic perturbations relative 
to the basic steady flow variables, and then applying a nonlinear stability analysis to 
obtain solvability conditions for the existence of non-trivial solutions at each order. In 
the present problem, it is necessary, owing to the open boundary conditions at the end 
of the tube, to carry out the perturbation analysis to third order to obtain the necessary 
conditions on the leading-order amplitudes. In other related problems, such as 
combustion instabilities in rocket motors discussed in fj 1, the commonly used closed- 
boundary conditions result in non-trivial solvability conditions at the second order. 
Consequently, the types of nonlinearities (cubic in the former, quadratic in the latter) 
that appear in the resulting amplitude equations depend strongly on the nature of the 
boundary conditions that are applied. This may be particularly significant for the 
rocket motor stability problem, for which the closed exit condition is clearly an 
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approximation. In particular, a modification in this condition to model more 
accurately the actual physical situation may lead to amplitude equations for the 
modified eigenfunctions that support qualitatively different dynamics. 

Another feature of the present analysis is that, unlike those problems for which a 
dispersion relation leading to a neutral stability boundary is obtained from a linearized 
analysis, linear stability theory (equations (3.1)) predicts the presence of all acoustic 
modes ((3.2k(3.5), (4.1k(4.3)), giving no information on growth rates. This is due to 
the fact that the linearized problem is homogeneous since the inhomogeneous coupling 
between the combustion chamber and the resonance tube, as represented by the 
boundary condition at z = 0, does not enter into the analysis until O(e3). Consequently, 
the growth rates corresponding to these eigenfunctions are only obtained at 
correspondingly higher orders in the perturbation analysis. Since all acoustic modes 
appear at leading order, the solvability conditions thus lead to an infinitely-coupled 
system of amplitude equations (equations (3.11) and (4.27)), rather than the finite type 
of system that typically arises from the nonlinear stability of discrete modes in the 
neighbourhood of a neutral stability boundary of the linearized problem (cf. Margolis 
& Matkowsky 1985; Booty, Margolis & Matkowsky 1987; Margolis 1991 a, b;  
Bechtold & Margolis 1991). 

Based on a knowledge of the growth rates corresponding to the linearized amplitude 
equations, it is reasonable to expect that an appropriately truncated version of the 
infinite system can provide a valid approximation under certain conditions. Some 
guidelines for truncating the system were thus presented, and illustrated with a 
complete analysis of limit cycle behaviour for the case of two longitudinal modes. A 
comparison with numerical results obtained for a three-mode truncation then provided 
additional evidence of the validity of a two- or three-mode analysis in the common case 
when only the first mode has a positive growth rate. We remark, however, that when 
two or more modes have positive linear growth rates, it can be anticipated that higher- 
order truncation schemes may be required owing to natural resonances that may occur 
between different modes that are separated on the eigenfrequency spectrum (Margolis 
1993). In addition, for some types of problems (such as that due to the forced motion 
of a piston), the presence of shocks or steep waves can require the retention of many 
modes in order to provide sufficient modal resolution (cf. Wang & Kassoy 199Oa-c). 

The general result based on our two- and three-mode analyses was the stable 
bifurcation of a limit cycle corresponding to a steady-amplitude acoustic oscillation at 
a critical value of a parameter that reflects the strength of the coupling of the resonance 
tube to its combustion source. Thus, the present model succeeds in capturing the basic 
phenomenon behind the operation of actual pulse combustors. Ultimately, the 
bifurcation branch reaches a turning point which, we conjecture, could be qualitatively 
preserved under still further modal resolution. Beyond this point our model predicts no 
steady limit-cycle behaviour. Indeed, numerical calculations in this regime lead to 
unbounded growth of the amplitudes, suggesting that additional damping mechanisms 
and/or a rescaling to accommodate large amplitudes would be required to describe 
bounded solutions there. 

Finally, we emphasize that a relatively simple physical model was chosen in this 
work primarily to illustrate a general approach to analysing nonlinear acoustic 
behaviour by strictly formal methods. Based on our two-mode analysis and our 
preliminary calculations with three modes, steady limit-cycle behaviour was the only 
non-trivial acoustic behaviour predicted, at least for the case in which only the first 
mode is linearly unstable. Although this is in qualitative agreement with both 
experiments (cf. Dec & Keller 1990; Dec et al. 1991) and direct numerical calculations 
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(cf. Barr et al. 1988, 1990), it seems likely, based on the general structure of the 
dynamical system of amplitude evolution equations derived here, that non-periodic 
acoustic oscillations arising from additional bifurcations are possible in these systems. 
Consequently, in future work we plan to analyse more detailed physical models and to 
study higher-order truncation schemes for cases in which two or more modes may have 
positive growth rates. We anticipate that either or both extensions of the present work 
will then lead to more complex dynamical solutions of the corresponding amplitude 
equations. 

This work was supported by the Applied Mathematical Sciences Research Program, 
Office of Energy Research, US Department of Energy. 

Appendix A. Solvability conditions 
In order for solutions to the nth-order problem (3.7) to exist, it is necessary that the 

inhomogeneous terms satisfy the solvability conditions (3.8) for any solution +zt, vt 
satisfying the adjoint of the homogeneous problem (3.1). To derive both the adjoint 
problem and these conditions, it is convenient to write (3.7a, b) in the vector form 

where (un, v,, w,) are the x-, y- and z-components of the velocity vector v. We now 
introduce, for any two complex vectors a and b, the inner products 

T i m  

(a,b) = lim m{o I T  dt ln dx J:dr(a.b*), 
T tm 

1 f a  f b  P l  

[a,b] = lirn kTJo d x j n  dy dz(a.b*), 
T+‘X 0 

where the asterisk denotes the complex conjugate. Then, by routine operations, we 
obtain the identity 
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Requiring that this identity be satisfied for the homogeneous case n = 1 implies that 
the left-hand side vanishes, giving the condition that the right-hand side vanish as well. 
Consequently, the latter is satisfied if the adjoint solution #,d is any (bounded) 
solution of the homogeneous problem (3. l), which is therefore self-adjoint. Using this 
result and (A I), equation (A 7) collapses to 

which, for the case of purely longitudinal modes, is equivalent to (3.8). 

Appendix B. Boundary effects 
In the presentation of the model in 92.1, explicit consideration of sidewall effects and 

possible ‘radiation damping’ out the end of the resonance tube was suppressed in 
favour of a volumetric damping term. However, as suggested by a reviewer, an explicit 
consideration of boundary and radiation damping may be readily incorporated into 
the analysis by specifying admittance/impedance types of boundary conditions at the 
sidewalls and at the end of the resonance tube. These may be written in a generalized 
form similar to that used to relate velocity and pressure at the entrance to the resonance 
tube (equation 2.6~)). In particular, the boundary condition (2 .6~)  at z = E? may be 
replaced by the relation 

where Gz = n,.fi is the velocity component in the +%direction. In non-dimensional 
form, this leads to a leading-order relation for the time-dependent pressure 
perturbation at z = 1 given by +A = M2gh wI,=,, t=t-t , ,  where w is the time-dependent 
perturbation component of longitudinal velocity, and 81, = (iio/p0 Gt) (dg/dGz)J,o. Thus, 
based on this scaling, O(1) values of the non-dimensional impedance coefficient gi will 
result in an O(sM2)  - O(e5) pressure perturbation at z = 1. However, if we formally 
consider values of this coefficient which are O( 1 / M )  by introducing & = Mg;, then the 
contribution appears at O(e3), so that in (3.7), #&, = b2Iz-, = 0, but b3Iz=, = 
A&, ~ ~ l ~ = ~ ,  t=t-t , .  This inhomogeneous term than contributes to the solvability condition 
(A 7) at this order, which, for the case of purely longitudinal modes, results in an 
additional linear term aFMA, on the right-hand side of the amplitude equations (3.1 I), 
where 

Thus, the linear growth rate of the Ith longitudinal mode given previously by (3.12) 
contains the additional contribution A: given by 

PIz& = g(Gz(F- f e N ,  g(qJ = P o ,  (B 1) 

at = -$Aexp(-iw,t,). (B 2) 

A ;  = - M& cos (u, te). (B 3) 
This calculation thus shows that although radiation damping introduces additional 
parameter and modal frequency dependencies into the expression for the linear growth 
rate of each acoustic mode, it introduces no change in the form of the amplitude 
equations themselves or in the expressions for the coefficients of the nonlinear terms in 
those equations. Consequently, a supercritical acoustic bifurcation is still predicted at 
a critical value of the driving parameterf; at which the expression for the linear growth 
rate first vanishes for some particular mode. 
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A similar calculation can be performed with respect to the sidewalls as well. In 
particular, if we interpret these boundaries as the edge of the acoustic boundary layer, 
then we may relax (2.6b) to admit a normal velocity perturbation that is coupled to the 
local pressure perturbation. Thus, we now replace (2.6 c) with an admittance condition 

n-iil, = h(p"(t"-f,)), h(p",) = 0, (B 4) 

where n denotes the outward normal on any side boundary C .  This is the same type 
of condition as (2.6 c), and consequently, the third-order solvability conditions (A 7) 
lead to the additional linear term ";MA,  on the right-hand side of the amplitude 
equations (3.1 l), where 

and the admittance coefficient hi = @,, a";/fi,) (dh/dFl$o) - O( 1). This in turn con- 
tributes an additional term A! given by 

(B 6) 

a; = -4hi exp (- iw, t,), (B 5 )  

A; = - 4Mhi cos (wl t,) 

to the linear growth rate of the lth longitudinal mode. Consequently, the form of the 
amplitude equations and the coefficients of the nonlinear terms in those equations are 
again unchanged, thereby preserving the nature of the acoustic bifurcation described 
in the main body of the paper. 
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